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Abstract. In this paper, via discussions of the simple model of a strong electron-phonon 
interacting system, we develop a new variational treatment for dealing with the super- 
conducting properties of such a system. The key idea of our treatment is to introduce a two- 
phonon coherent state for the phonon subsystem so that the ground-state energy of the 
interacting system can arrive at a stable minimum. We have shown that the superconducting 
condensation energy in our variational state is of a reasonable magnitude and that the 
effective mass of the polarons is much smaller than that considered by previous researchers. 
The gap equation and the expression for critical temperature T, in our theory are also 
different from those in ordinary polaronic state as well as from those in Bardeen-Cooper- 
Schrieffer theory. We have pointed out the possibility of high-T, superconductivity in such 
an interacting system. 

1. Introduction 

In recent years, the properties of strong electron-phonon interacting systems (SEPISS) 
have aroused considerable interest among solid state physicists because such a system 
has the potential for displaying high-temperature superconductivity. Theoretical 
research on the superconducting properties of such systems fall into two general classes. 
One is represented by the so-called strong-coupling theory (for a review, see Scalapino 
(1969)) which is an extension of the famous Bardeen-Cooper-Schrieffer (BCS) (1957) 
weak-coupling theory and is a continuum model theory, in which only those electron 
states near the Fermi surface are strongly coupled to the phonons. However, some 
workers (Alexandrov et a1 1986a, b) have pointed out that in strong-coupling narrow- 
band systems the well known Migdal theorem on which the strong-coupling theory is 
based breaks down because in such systems one may be in the so-called anti-adiabatic 
limit (Alexandrov et a1 1986a, b, Nash 1987) 

W 3 W  (1) 
where w is the characteristic phonon frequency and W is the renormalised band half- 
width. 

The other is concerned with the strong-coupling narrow-band systems, represented 
by the theories of electrons on a lattice strongly coupled to the phonons, in which all 
electron states in the Fermi sea are involved in the superconducting process. In such 
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systems the strong electron-phonon interaction leads to lattice instabilities and the result 
of it is the formation of the so-called small polarons (Toyazawa 1962, Anderson 1975, 
Alexandrov et aZ1986a, b). In accordance with the magnitude of the effective attraction 
between polarons, which is denoted by V ,  research belonging to this class could be 
divided into two subclasses. If the effective attraction is small (V < W), Alexandrov 
(1983) and Robaszkiewicz et aZ(1981b, 1982) have shown that the small polarons form 
spatially overlapping Cooper pairs with superconducting properties similar to ordinary 
BCS theory. There are nevertheless differencesin the gap equations and in the expressions 
for the critical temperature T,. In the case of strong polaron-polaron coupling (V + W), 
Alexandrov and Ranninger (1981), Alexandrov et aZ 1984 and Robaszkiewicz et aZ 
(1981a) have shown that a new type of superconductivity, the so-called bipolaronic 
superconductivity, could result and its properties are different in many ways from the 
BCS properties but are similar to those of the superfluidity of liquid helium. 

From the above reviews, we see that the magnitude of Wplays an important role in 
discussing the SEPIS. As is well known, in the low-temperature region, W is connected 
to the bare band half-width D via a polaronic narrowing factor (Holstein 1959, Toyazawa 
1962) 

W = D exp( -g2 /h202)  (2) 
where g represents the strength of the electron-phonon interaction. However, as this 
narrowing factor is obtained in dealing with the so-called small-polaron problem which 
corresponds to an electron in a narrow band but interacts with phonons strongly (Toy- 
azawa 1962), we should ask a new question: in many-electron and phonon interacting 
systems, what is the situation? 

We can see from equation (2) that, if the ratio g/hw is larger than unity, which is 
exactly the case for the SEPIS (Alexandrov et a1 1986a, b, Nash 1987), the band-narrowing 
effect should be fairly strong even if the temperature is zero. However, when such a 
strong narrowing effect is taken into account the ground-state energy of the SEPIS would 
increase as the mass centre of the band is not influenced by the electron-phonon 
interaction (without including the polaronic binding energy). If the average number n 
(=Ne /N)  of electrons per unit cell is a negligibly small quantity, the increase in the 
ground-state energy is also negligible. However, the situation is the completely different 
case when n is a finite quantity. In this paper, via the discussion of a simple model for 
the SEPIS, we want to illustrate the increase in the ground-state energy in the n # 0 case 
and develop a variational treatment to lower it. We shall point out that in practice the 
narrowing effect could be much weaker than equation (2) indicates provided that n is 
some finite quantity and this weakening mechanism of our variational treatment has 
some interesting influences on other physical propeties of the interacting system. 

The variational treatment in this paper consists of the following steps. Firstly, a 
unitary transformation of displaced-operator type is used to transform our model Ham- 
iltonian H into l?; as is well known, H describes the same physical system as H does. 
Secondly, for the state vector IY) of H ,  we assume that the phonon and the electron 
subsystems could be decoupled approximately, i.e. 

IY) = l y p  ) l y e )  (3) 
where IYP) contains only phonon variables and IY,) only electron variables. Thirdly, a 
variational state IY!,,), which is new and called the two-phonon coherent state (Zheng 
1987), is introduced for phonon subsystem, in which some variational parameter is 
included for the ground-state energy to arrive at a stable minimum. Fourthly, the method 
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of Robaszkiewicz et a1 (1981b, 1982) is used to obtain the ground-state energy of our 
modelsystem. Finally, thevariational parameter is adjustedto arrive at astable minimum 
of the ground-state energy of the system. 

2. Theoretical analysis 

Our model Hamiltonian is the Hubbard model of the electron subsystem plus an elec- 
tron-phonon interaction with the phonon subsystem, 

H = ( E  - p)di+diu + 2 2 T i d L d j ,  + 2 hwb:bi  
i, U i , j ( i # j )  U i 

+ 2 U d &  d i ,  d:i dik + x gd,+diu(b: + b i )  
i i,  U 

(4) 

where p is the chemical potential, d,+ and diu are the creation and annihilation operators 
of electrons, and b: and bi are the creation and annihilation operators of phonons. The 
third term of equation (4) represents the harmonic energy of phonons and the other 
notation in equation (4) is as usual. For simplicity, the strengthg of the electron-phonon 
interaction and the phonon frequency CL) are assumed to be dispersionless. Applying a 
unitary transformation of the displaced-operator type to H ,  we obtain 

fi = exp(R) H exp(-R) ( 5 )  

and, using the transformation relations 

we have 

At this point, one could suppose that, when the temperature is low enough, the state 
of the phonon subsystem does not change as electrons move, so that the electron and 
the phonon subsystems could be decoupled by averaging H over the vacuum state of the 
phonon subsystem and the band-narrowing factor exp( - g 2 / h 2 W 2 )  thus obtained. This 
is the usual way of dealing with the electron-phonon interaction in discussing the small- 
polaron problem (Holstein 1959, Toyozawa 1962, Mahan 1981). However, in our many- 
electron and phonon interacting system, such a narrowing effect would bring about an 
increase in the ground-state energy of the system, as pointed out in § 1. In order to lower 
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this energy, we introduce a new variational state lYp) for the phonon subsystem, 

l v p )  = exp(-S) Ivac) (10) 

s = &(bibj - b:b:) (11) 
i 

where a is a variational parameter for the ground-state energy to be a stable minimum. 
If a: = 0, JYp) returns to the vacuum state Jvac); as long as a # 0, IYp) is a new and special 
state of the phonon subsystem other than any eigenstate of phonon number operators. 
Because the unitary operator exp(-S) is similar to that of the two-photon coherent state 
in quantum optics proposed firstly by Yuen (1976), we call lYp) the two-phonon coherent 
state (Zheng 1987). 

Using the relations 

exp(S) ( b t  * b i )  exp(-S) = (b: k b i )  exp( i2a)  (12) 
and 

exp(S) b:bi exp(-S) 

= [b t  cosh(2a) + bi sinh(2a)][b; sinh(2a) + bi cosh(2a)I (13) 
we can average over the variational state /Yp) of the phonon subsystem and thus 
decouple the electron and the phonon subsystems approximately. In so doing, an 
effective Hamiltonian of the electron subsystem is obtained: 

Heff = Nho[sinh(2a)12 + (E, - p)d&di, 
i ,  u 

where 

E , = E - J  U ,  = U -- 2 J  J = g 2 / i i o  (15) 

(16) 

and U, < 0 has been assumed. The renormalised hopping integral T, has the form 

T ,  = p T i  = T i  exp[-(J/hw) exp(-4a)] = T i  exp[-(J/hw)a*] 

i.e. in the exponent of the band-narrowing factor there appears a new factor r 2  = 
exp(-4a) which is connected with the variational parameter a. So long as a > 0 the 
band-narrowing effect of phonons would be weakened and it could lower the ground- 
state energy of the interacting system. However, the first term in equation (14) represents 
the harmonic energy of the phonon subsystem and it would increase when a: increases. 
These two effects of the variational parameter a compete with each other and the result 
is that a stable minimum of the ground-state energy could be obtained at some non-zero 
a. The procedure of how to determine the practical value of a will be given out in § 3. 

3. Ground state 

In this section, we consider the T = 0 case. For simplicity, we can take advantage of the 
results of Robaszkiewicz et a1 (1981b, 1982) to write directly expressions for the ground- 
state energy and the gap equation of the superconducting state of the interacting system 
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from the effective Hamiltonian Heff: 

A i  1 
- hw[sinh(2a)12 + E ,  - po - + + - - -2 v / E 2 ( k )  + A i  (17) 

Q O  _ -  
N i 4 1ue1 k 

In equations (17)-(20) all the subscripts 0 denote that the corresponding quantities are 
evaluated in the T = 0 case. Obviously, A, = 0 is a trivial solution of equation (19). 

In what follows, a square density of states 

for /el s D 

otherwise 

of the electrons will be assumed, so that analytical results can be obtained. Using such 
a simplified density of states, it could be easily verified that the solutions of the above 
equations are 

E e  - P O  - IUeln/2 = (1 - n ) ~ D c o t h ( ~ D / l U , / )  

A. = w p D / s i n h ( 2 p D / /  U ,  I) 
Qo(Ao # O)/N = ho[sinh(2a)12 + IU,Jn2/4 - (n2/2)pD coth(2pD/lU,l). 

(23) 

(24) 

(25) 

(26)  

(27) 

If we take the trivial solution A. = 0 of equation (19), we have 

E ,  - po - IU,(n/2 = (1 - n)pD 
S2,(Ao = O)/N = hw[sinh(2a)12 + 1U,ln2/4 - n2pD/2. 

Differentiating Q0(Ao # 0) and Qo(Ao = 0) with respect to the variational parameter 
z, we can obtain two transcendental equations for determining the minimum points 
z,(Ao # 0) and z,(Ao = 0): 

l/z$(A, # 0) = (1 + [2n2JD/(ho)*][coth Y - Y (sinh Y ) - 2 ]  

x exp[ - (J /hw)z&(Ao # 0)]}1/2 

y =  ( 2 m J I )  eXP[-(J/W~2,(Ao f 0)l 

(28) 
where 

and 

l /zk(Ao = 0) = (1 + [2n2JD/(hw)2] exp[-(J/hw)zi(Ao = O)]}"* 



1646 Zheng Hang 

0.2 1 . 0  

Figure 1.  n , (A ,  # 0) (curve A), fi"(A, = 
0) (curve B) anAA,  (curve C) plotted 
against t for hw = 0.08, J = 0.3, U = 
0.3 and n = 0.8. The -arrows indicate 
tm(Ao # 0) = 0.4228 (Qo(A0 # O),/N= 
-0.04059) and 
(&(A" = O ) , / N =  - 

r,,,(An = 0) = 0.4208 
- 0.040 24), 

T respectively. 

The corresponding minimised values of ground-state energy can be obtained by replacing 
t in SZo(Ao # 0) and Qo(Ao = 0) by t m ( A o  # 0) and z,(Ao = 0), respectively. 

Numerical results in some special cases are given in figures 1, 2 and 3. The values 
of various parameters employed in the calculations are listed in the figures where 
the overbar designates that the corresponding parameter is expressed in units of D. 
In figure 1, we can see that for either A. # 0 or A,, = 0 a stable minimum of Qoo/N, 
Qo(Ao # O),/N or SZo(Ao = O),/N is really achieved at the respective t m ( A o  # 0) or 
t , ( A o  = 0) point, at t,(Ao # 0) the non-zero gap function A, takes a value of 0.03314. 
From the minimised energy given in the figure, we derive the superconducting 
condensation energy as follows: 

S = C2o(AO # O),/N - SZ,(A, = O),/N = -0.00035. (30) 

n 

0.15 0.35 
7 

Figure 2. p,,,(Ao # 0) plotted against ?for 
fiw = 0.08, U = 0.3 and n = 1 (curve A) 
and pm_(Ao # 0) plotted against n for hw = 
0.08, U = 0.3 and J = 0.3 (curve B): ---, 
exp( -J/fio). 
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However, if we do not introduce the two-phonon coherent state (a = 0 and z = l), we 
would have 6 = -0.04, which is a hundred times larger than the value in equation (30) 
and is too large to be a correct condensation energy. For comparison, we should note 
that the energy unit D is of the order of 0.1-1 eV for a narrow-band system and the 
condensation energy in BCS theory is of the order of lo-’ eV. 

n 
0.6 1 .o 

0 
a 

0.35 - 0.15 
J 

Figure?. Ao/hw plotted against j for  fiw = 
0.08, U = 0.3 and n = 1 (curve A) and Ao/ 
hw plgtted again$ n relation for fiw = 
0.08, U = 0.3 andJ = 0.3 (curve B). 

In figure 2, the relation between the narrowing factor pm(Ao # 0) (corresponding to 
that in equation (16) where z is replaced by t m ( A o  # 0)) and J o r  n is given. Curve A 
indicates that, when the electron-phonon interaction becomes stronger, &Ao # 0) 
decreases, but its rate of decrease is much slower than the usual Holstein factor, which 
is represented by a broken curve in the figure. Curve B indicates that, when the popu- 
lation of electrons increases, pm(Ao # 0 )  becomes larger. This tendency is consistent 
with our expectations, as is discussed in § 1. This weakening mechanism of the narrowing 
effect in our variational treatment should result in a much smaller effective mass of 
polarons than that considered by previous workers (see, e.g., Toyozawa 1962, Alex- 
androv et a1 1986a, b, Nash 1987) because p,D in our theory is the renormalized band 
half-width of the polaron and thus the effective mass m* of the polaron should be 
inversely proportional to pmD. As we know, if the effective mass of the charge carriers 
is too large (m* + CO), there would be no superconductivity. 

In figure 3, the relation between the non-zero gap function Ao/fiw (corresponding 
to that in equation (24) where z is replaced by z,( A. # 0)) andJor  n is given. We express 
A. in units of ho because it is a characteristic energy in the SEPIS. Curve A indicates that, 
on increase in the strength of the electron-phonon interaction, A. increases, just as we 
might expect. Curve B indicates that, on increase in the population of electrons, A. 
decreases. This type of behaviour for A. arises because pm(Ao # 0) increases when the 
population of electrons increases, as can be seen from equation (24). 
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4. Critical temperature 

In the finite-temperature region the results of Robaszkiewicz eta1 (1981b, 1982) can also 
be used to write directly the gap equation from the effective Hamiltonian Heff: 

p ( T )  is the chemical potential, /3 = l/k,Tand p m  is abbreviated from p m ( A o  # 0). The 
problem of solving equations (31)-(33) is difficult. In this section, only the critical 
temperature T,  will be discussed because, when T-+ T,, A-+ 0 and we can solve 
equations (31)-(33) without more difficulty. 

When p = 0, = l/k,T,, equations (31)-(33) become 

Using the simplified density of states (22), it can easily be verified that equation (34) can 
be rewritten as 

where 

~c = E ,  - P(T, )  - /Ueb/2 = (1 - n)pmD - ( 1 / B c )  

x lnU1 - exp(-nPcpmD)I/{l - exp[-(2 - n>PcpmD)1>II. (38) 
Equation (37) can be solved numerically. For the special case of weak coupling, i.e. 
2pmD/l U,l B 1 (in accordance with the parameters employed in figures 2 and 3 the range 
of this ratio is 2-10), we should have BcpmD B 1 and the chemical potential p(T,) in 
equation (38) can be approximated by 

Fc = E ,  - p ( T c )  - /U,ln/2 = (1 - n)p,D (39) 

Then the integral in equation (37) can be carried out approximately as follows: 
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Integrating by parts, we have 

4pmD/IU,/ = tanh z In Z ( [ C ( P ~ ~ + ~ C ) / ~  + tanh z In z I 0 c P m  i( ( D-FM 

P&,D+FJ/2  P , ( P ~ D - F J / ~  1 d z  In z (sech z ) ~ .  
- (Io + i, 

As PcpmD B 1, this equation may be approximated as 

2pmDIIUeI = ln[(Pc/2>v/(pmD + Fc)(pmD - ~ c ) 1 +  l n ( 4 e x ~  Y / X )  (40) 

(41) 

(42) 

where y is Euler’s constant and (2 exp y ) / x  = 1.134. A simple rearrangement yields 

1 / P c  = k B ~ c  = [ ( 2 e x ~  ~>/nIvn(2 - n)pmD exp(-2pmD/IUeI). 

PcpmD = ( ~ P ~ x P  ~ ) [ n ( 2  - n)I-”’ exp(2pmDlIUeI) 

We should point out that, according to equation (41), 

and the condition PcpmD B 1 is satisfied because, when 2pmD/lUel is larger than 2, we 
have PcpmD > 7.5. 

Using the gap function A. in the zero-temperature case (equation (24)), we obtain 

A o / k B T c  = 1.764 (43) 
which is the same relation as in the BCS theory. 

In figure 4, the relation between the critical temperature T, (in units of ho) andJor  
n is given. T, increases when represents the 
strength of the electron-phonon interaction. However, the relation between kBT,/ho 
and n in this figure is different qualitatively from the result of Robaszkiewicz et a1 (1982); 
according to their work, T, should increase when n increases from 0.6 to 1. The reason 
for the decrease in T, in our work when n increases from 0.6 to 1 is the increase in pm in 
figure 2 in the same n range. 

We can estimate the values of T, in our model system. It can be seen from figure 4 
that in the ranges employed for various parameters the critical temperature T, is of the 

increases, as we might expect, since 

n 
0.6 1 .o 

Figure 4. k,T,/hw plotted against for 
hw = 0.08, U = 0.3 and n = 1 (curve A) 
and k,T,/hw plott_ed against n for hw = 
0.08, U = 0 . 3 a n d J =  0.3(curveB). 

0.35 
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order of (0.1-0.4) hw/kB.  We can assume that hw/kB -- 300 K, which corresponds to 
hw -- 26 meV and is reasonable; thus T, is of the order of 30-120 K. This range of T, is 
the same as that of the high-temperature superconductivity in Ba-La-Cu-0 systems 
(Bednorz and Muller 1986) (for references and a list of compounds see, e.g., Murphy et 
a1 (1987)). 

The results discussed in this paper indicate that the gap equation and the expression 
for T, in our theory are different from those of the BCS theory as well as from those of 
Robaszkiewicz et a1 (1981b, 1982). 

5. Concluding remarks 

(i) In SEPIS the strong electron-phonon interaction leads to lattice instabilities and it 
results in the formation of small polarons with an extremely narrow band. However, 
since the narrowing effect is induced by the random motion of phonons in the phonon 
cloud around each polaron, when n # 0 the phonons might form some ordering state of 
zero momentum to weaken the narrowing effect. The two-phonon coherent state is just 
such an ordering state in which the phase ordering of the phonon subsystem arises from 
the interference between phonon clouds around every polaron. 

(ii) The role played by the variational parameter a, which may be considered as an 
ordering parameter, is twofold. It can offset the narrowing effect of phonons, as is 
indicated by equation (21) (if a+ x, p = 1). However, the non-zero a can make the 
harmonic energy of the phonon subsystem increase; when a+ CO, this energy also tends 
to infinity. These two effects of acompete with each other and our variational treatment 
consists in selecting the proper value of it at which a stable minimum of the ground-state 
energy can be achieved. In such a variational treatment a superconducting condensation 
energy of reasonable magnitude can be derived and the effective mass of polarons is not 
as large as considered previously (Holstein 1959, Toyozawa 1962, Alexandrov et a1 
1986a, b, Nash 1987). It is known that, if the effective mass of the charge carriers is too 
large, the superconductivity would disappear since the thermal conductivity and the 
permanent current of a superconducting system are inversely proportional to the effec- 
tive mass of charge carriers. 

(iii) Although an approximate decoupling of the electron-phonon interaction is 
assumed (equation (3)), the interplay between the two subsystems still exists via the 
action of the variational parameter a. The practical value of a,  which describes the state 
of phonons, is dependent on the state of electrons and the strength of the electron- 
phonon interaction. This situation is completely different from the small-polaron case 
(Mahan 1981, Alexandrov et af 1986a, b) where the phonon subsystem is in a vacuum 
state. Moreover, if we take into account the fact that the frequency wq and the strength 
g(q) of the interaction are q dependent, thus aq is also q dependent and this function of 
q should be connected by the variational treatment with the spectra of wq and g(q). This 
problem is left for further research. 

(iv) We have pointed out in § 4 that in our treatment the ratio 2pmD/IU,l is in the 
range 2-9, so that our theory is a weak-coupling one although the electron-phonon 
interaction may be strong. The comparatively high T,, which is or the order of (0.1- 
0.4) hulkB,  results from the fact that all polarons in the SEPIS are involved in the 
superconducting process. 

(v) We consider that our variational method given in this paper is necessary for 
dealing with the strong-coupling narrow-band system from first principles. The reason 
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is as follows. On the one hand, it is a generally accepted viewpoint that the strong 
electron-phonon interaction can induce an attractive interaction between polarons 
which may overcompensate for the Coulomb repulsion between them and leads to an 
effective attraction (Anderson 1975, Alexandrov and Ranninger et a1 1981, Alexandrov 
1986a, b, Robaszkiewicz et a1 1981a, b). On the other hand, if we consider such a many- 
polaron systemvia the usual small-polaron viewpoint, then the bandof the smallpolarons 
would be extremely narrow and their effective mass would be very large; these will not 
be consistent with the real cases of some strong-coupling narrow-band systems. Thus we 
are in a dilemma. The variational treatment in this paper has settled this dilemma. 
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